-16t^2+160t-18=0

Simple and best practice solution for -16t^2+160t-18=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16t^2+160t-18=0 equation:



-16t^2+160t-18=0
a = -16; b = 160; c = -18;
Δ = b2-4ac
Δ = 1602-4·(-16)·(-18)
Δ = 24448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24448}=\sqrt{64*382}=\sqrt{64}*\sqrt{382}=8\sqrt{382}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-8\sqrt{382}}{2*-16}=\frac{-160-8\sqrt{382}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+8\sqrt{382}}{2*-16}=\frac{-160+8\sqrt{382}}{-32} $

See similar equations:

| 12^2x+1=2503 | | 3•n=69 | | 3a+5=44 | | 5x–13x+x=7x+8x | | 18=0.32.w | | 8(2x-3)-5=45 | | 1a=25 | | 27^2x+7=81^x+4 | | 3(1+.2y)+-6=24 | | 2x-1/10=2/5-1/4x-17/20 | | -6(x-12)=-48 | | Y=(x+2)2+4 | | y^2-24y+64=0 | | 3.7(4y-2)+y3=14.8y+0.6 | | 5(2w^2-1)-(10w^2-6)=-(w+2) | | 1/3x(2/5-3x)=0 | | x+8-6=10 | | (116)3x=642(x+8)(116)3x=642(x+8) | | X=q+28 | | 10x-44=6x | | 2x^2-1x-17=0 | | 9z*15=7914 | | 9d+13=-5d+12 | | x5x−9=3x+3 | | 4j-3=7j+12 | | 27=6(x+3)+3x | | -6u+2(u-4)=8 | | 2a+9=12 | | 4=-2(x=4) | | (9z)(15)=7914 | | -2v+5(v+2)=25 | | 2n^2-12n=10=0 |

Equations solver categories